首页 --> 新闻发布 -->正文
Seminar第1606期 On Some Estimates of Hawking Mass for CMC Surfaces

创建日期 2018/5/12 福平   浏览次数  168 返回    
字号:   
 

报告主题:On Some Estimates of Hawking Mass for CMC Surfaces
报告人:谢纳庆   教授   (复旦大学)
报告时间:2018年 5月17日(周四)15:30
报告地点:校本部G507
邀请人:尹思露

报告摘要:We apply the Riemannian Penrose inequality and the Riemannian positive mass theorem to derive inequalities on the boundary of a class of compact Riemannian $3$-manifolds with nonnegative scalar curvature. The boundary of such a manifold has a CMC component, i.e. a $2$-sphere with positive constant mean curvature; and the rest of the boundary, if nonempty, consists of closed minimal surfaces. A key step in our proof is the construction of a collar extension that is inspired by the method of Mantoulidis-Schoen. These inequalities can be viewed as certain estimates of the Hawking mass. This talk is based on a joint work with Pengzi Miao at University of Miami.

 

欢迎教师、学生参加 !


版权所有 © 上海大学    沪ICP备09014157   地址:上海市宝山区上大路99号(周边交通)   邮编:200444   电话查询
技术支持:上海大学信息化工作办公室   联系我们